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Strings and the Gauge Theory of Spacetime Defects
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We present a new topological invariant to describe space±time defects which is
closely related to the torsion tensor in a Riemann±Cartan manifold. By virtue of
the topological current theory and f -mapping method, we show that there must
exist multistring objects generated from the zero points of the f -mapping. These
strings are topologically quantized. The topological quantum numbers are the
winding numbers described by the Hopf indices and the Brouwer degrees of the
f -mapping.

1. INTRODUCTION

The landscape of fundamental physics has changed substantially in recent

decades (Rovelli, 1998). On one hand, at the microscopic level the strong

and weak interactions dominate, while the gravitational interaction is the

weakest and seems not to play any role. On the other hand, all known
interactions but gravitation, that is, the strong, weak, and electromagnetic

interactions, are well described within the framework of relativistic quantum

field theory in flat Minkowski space±time. So at first sight it seems that

gravitation has no effects when we are concerned with elementary particle

physics. But we know that this is not true (De Sabbata, 1994): in fact, if we

consider the quantum theory in curved instead of flat Minkowski spacetime,
we have some very important effects (for instance, neutron interferometry;

De Sabbata et al., 1991). Moreover, when we go to the microphysical level,

that is, when we are concerned with elementary particle physics, we realize

that the role of gravitation becomes very important and necessary and this

happens in the first place when we consider the early universe or the Planck

era. In this unprecedented state of affairs, a large number of theoretical
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physicists from different backgrounds have begun to address the piece of the

puzzle which is clearly missing: combining the two halves of the picture and

understanding the quantum properties of the gravitational fieldÐ equivalently,
understanding the quantum properties of spacetime.

An exciting outcome of the interplay between particle physics and cos-

mology is string theory (Hindmarsh and Kibble, 1995). Strings are linear

defects, analogous to those topological defects found in some condensed

matter systems such as vortex lines in liquid helium, flux tubes in type II

superconductors, or disclination lines in liquid crystals, and they are closely
related to the torsion tensor of the Riemann±Cartan manifold (Duan et al.,
1994). String theory is strongly believed to solve the short-distance problems

of quantum gravity at the Planck scale by providing a fundamental length

lstr 5 ! " c/T, where T is the string tension, and provides a bridge between

the physics of the very small and the very large.

In recent years, string theory has reached an exciting stage, where models
of various types [such as the Wess±Zumino±Witten model (Bakas, 1993,

1994), Ramond±Ramond charges of type II string theory (Cvetic and Youm,

1996), and the supersymmetric SO(10) model (Jeannerot, 1996)] have been

of much interest in differential geometry (Bakas and Sfetsos, 1996), field

theory (Robinson and Ziabicki, 1996), and general relativity (Larsen and
SaÂnchez, 1996). Though all these features make string theory very attractive,

since most of them are based on concrete models, they are not very perfect

and the topological properties of strings are not very clear.

As is well known, torsion is a slight modification of the Einstein theory

of relativity [proposed in 1922±23 by Cartan (1922)], but is a generalization

that appears to be necessary when one tries to reconcile general relativity
with quantum theory. The main purpose of this paper is to establish a topologi-

cal theory for a string through the f -mapping method (Duan and Meng,

1993) and the theory of composed gauge potential (Duan and Lee, 1995) in

a 4-dimensional Riemann±Cartan manifold X without any concrete models

in the early universe. This theoretical framework includes three basic aspects:

the generation of multistrings in a 4-dimensional Riemann±Cartan manifold,
the topological charges of the multistrings, and their evolution equations.

This paper is organized as follows: In Section 2, we introduce a new

topological invariant to describe spacetime defects, and using the decomposi-

tion of the gauge potential, we get the inner structure of the torsion. In Section

3, by means of the topological tensor current theory and the f -mapping

method, the multistrings are generated naturally at the zero points of the
vector total field

-
f , and the topological quantum numbers of the length of

these strings are just the Hopf indices and the Brouwer degrees of the f -

mapping. Furthermore, using some important relations, we obtain the Lagran-

gian density of multistrings and deduce the corresponding evolution equations
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in Section 4, and point out that the Lagrangian density is a generalization of

that of Nielsen for strings and the evolution equations relate to the harmonic

mapping in general relativity.

2. NEW TOPOLOGICAL INVARIANT AND SPACE± TIME
DEFECTS

Using vierbein theory and the gauge potential decomposition, we will

construct an invariant formulation of space±time defects. Space±time defects
have been discussed from different points of view by many physicists. We

will follow Duan and Zhang (1990), who studied space±time defects from

the point of view of gauge field theory. The dislocation is described by

the torsion

T A
m n 5 D m e A

n 2 D n e
A
m , m , n , A 5 1, 2, 3, 4 (1)

where e A
m is the vierbein field, and its gauge covariant derivative

D m e A
n 5 - m e A

n 2 v AB
m (x)e B

n

where v AB
m stands for the spin connection of the Lorentz group.

By analogy with `t Hooft’ s (1974) viewpoint, to establish a physical

observable theory of space±time defects we must first define a gauge-invariant

antisymmetric second-order tensor from the torsion tensor with respect to a
unit vector field N A(x) as follows:

T m n 5 T A
m n N A 1 e A

n D m N A 2 e A
m D n N A

By making use of

D m N A 5 - m N A 2 v AB
m N B

and (1), we can rewrite this as

T m n 5 - m A n 2 - n A m (2)

where A m 5 e A
m N A is a kind of U (1) gauge potential. This shows that the

antisymmetric tensor T m n expressed in terms of A m is just like the U (1) gauge
field strength [i.e., the curvature on a U (1) principle bundle with base manifold

X ], which is invariant for the U (1)-like gauge transformation

A 8m (x) 5 A m (x) 1 - m L (x) (3)

where L (x) is an arbitrary function.

Now, let us investigate the integral of the two-form T 5 1±2 T m n dx m Ù dx n .

It will be shown that, in topology, this is associated with (but is not!) the

first Chern class, i.e.,
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l 5 # 1

2
T m n dx m ` dx n

Since the integral quantity l carries neither the coordinate index nor the group

index, it must be pointed that l is invariant under a general coordinate

transformation as well as a local Lorentz transformation. Furthermore, in l
there is another U(1)-like gauge invariance for (3). In fact, l is a new topologi-

cal invariant and is used to measure the size of the space±time defects with

the dimension of length.
Very commonly, the topological property of a physical system is much

more important and worth investigating. It is our conviction that, in order to

get a topological result, one should input the topological information from

the beginning. Two useful toolsÐ the f -mapping method and composed

gauge potential theoryÐ do this. As A m is a kind of U(1) gauge potential,
for a section F (x) of the complex line bundle L(X ) with the base manifold

X, which is looked upon as the order parameter of the spacetime defects, the

corresponding U(1)-covariant derivative of F (x) with A m is

D m F (x) 5 - m F (x) 2 i
2 p
Lp

A m F (x)

D m F *(x) 5 - m F *(x) 1 i
2 p
Lp

A m F *(x)

where Lp is the Planck length introduced to make both sides of the formula

have the same dimension (Duan et al., 1994). From the above equations,

A m (x) can be expressed by

A m (x) 5
iLp

4 p F F *
[( F - m F * 2 F * - m F ) 2 ( F D m F * 2 F *D m F )] (4)

Further calculation shows that

A m (x) 5
iLp

4 p 1 F

! F F *
- m

F *

! F F *
2

F *

! F F *
- m

F

! F F * 2
2

iLp

4 p F F *
( F D m F * 2 F *D m F ) (5)

From the Chern±Weil homomorphism (Nash and Sen, 1983), we know that

our new topological invariant is independent of the gauge potential, i.e., the
last term in the RHS of equation (5) has nothing to do with the topological

property in our theory. So we have a choice of many gauge potentials and

the choice depends on the convenience of calculation. In the present work,

we select A m as
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A m (x) 5
iLp

4 p 1 F

! F F *
- m

F *

! F F *
2

F *

! F F *
- m

F

! F F * 2
satisfying relation (3) for the corresponding U(1) gauge transformation

F 8(x) 5 L (x) F (x). The section F (x) of the complex line bundle can be

expressed by

F (x) 5 f 1(x) 1 i f 2(x)

i.e., the section of the complex line bundle is equivalent to a 2-dimensional

real vector field
-

f 5 ( f 1, f 2), and ! F F * 5 | f | 5 ! f a f a (a 5 1, 2). By

defining the direction of the vector field
-

f as

n a(x) 5
f a(x)

| f (x)|
(6)

we can obtain the expression of A m (x) in terms of n a from (5),

A m (x) 5
Lp

2 p
e abn

a(x) - m n b(x) (7)

Obviously, n a(x)n a(x) 5 1, and n a(x) is a section of the sphere bundle S (X )
(Duan and Meng, 1993). The zero points of f a(x) are just the singular points

of n a(x). Thus we get the total decomposition of the U(1) gauge potential

A m with the unit 2-vector field n a, and because of the topological property

of n a, we input the topological information successfully.

3. SECOND-ORDER TOPOLOGICAL TENSOR CURRENT AND
THE GENERATION OF STRINGS ON A
RIEMANN ± CARTAN MANIFOLD

In recent years, the topological current theory proposed by Duan has

had a significant role in particle physics and field theory (especially gauge

theory) (Duan and Meng, 1993; Duan and Lee, 1995; Duan and Zhang, 1990).

The topological current theory can only be used to discuss the motion of

pointlike particles (or pointlike singularities). In order to study string theory,

we need to extend the concept, and introduce a second-order topological
tensor current from the torsion.

From the above discussions, we can define a dual tensor j m n of T l r

as follows:

j m n 5
1

2

1

! gx

e m n l r T l r

5
1

2

1

! gx

e m n l r ( - l A r 2 - r A l ) (8)
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With the decomposition of A m in (7), j m n can be expressed in terms of n a by

j m n 5
Lp

2 p
1

! gx

e m n l r e ab - l n a - r n
b (9)

which shows that j m n is just a second-order topological tensor current satisfying

j m n 5 2 j n m ,
1

! gx

- m ( ! gx j m n ) 5 0

i.e., j m n is antisymmetric and identically conserved.

Using (9) and

- m n a 5
1

| f |
- m f a 1 f a - m 1 1

| f | 2 ,
-

- f a (ln | f |) 5
f a

| f |2

which should be looked upon as generalized functions, we can express j m n by

j m n 5
Lp

2 p
1

! gx

e m n l r e ab
-

- f c

-
- f a (ln | f |) - l f c - r f b (10)

By defining the general Jacobian determinants J m n ( f /x) as

e abJ m n ( f /x) 5 e m n l r - l f a - r f b (11)

and making use of the Laplacian relation in f -space

- a - a ln | f | 5 2 p d (
-

f ), - a 5
-

- f a

we obtain the d -like topological tensor current rigorously:

j m n 5
1

! gx

Lp d (
-

f )J m n 1 fx 2 (12)

It is obvious that j m n is nonzero only when
-

f 5 0.

Suppose that for the system of equations

f 1(x) 5 0, f 2(x) 5 0

there are l different solutions; when the solutions are regular solutions of f
at which the rank of the Jacobian matrix [ - m f a] is 2, the solutions of

-
f (x)

5 0 can be expressed in a parametrized way by

x m 5 z m
i (u 1, u 2), i 5 1, . . . , l (13)

where the subscript i represents the ith solution and the parameters u I (I 5
1, 2) span a 2-dimensional submanifold with the metric tensor
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gIJ 5 g m n
- x m

- u I

- x n

- u J

which is called the ith singular submanifold Ni in X. For each Ni , we can

define a normal submanifold Mi in X which is spanned by the parameters v A

(A 5 1, 2) with the metric tensor

gAB 5 g m n
- x m

- v A

- x n

- v B

and the intersection point of M i and Ni is denoted by pi. By virtue of the

implicit function theorem, at the regular point pi , the Jacobian matrix J( f /

v) satisfies

J 1 fv 2 5
D ( f 1, f 2)

D (v 1, v 2)
Þ 0 (14)

The d function on a submanifold Ni d (Ni) satisfies the surface area relation

(Schouten, 1951)

# d (Ni) ! gx d 4x 5 # Ni

! gu d 2u

where ! gxd
4x and ! gud

2u [gu 5 det(gIJ)] are invariant volume elements of

X and Ni , respectively, and the expression for d (Ni) is

d (Ni) 5 # Ni

1

! gx

d 4(
-

x 2
-
z i (u

1, u 2)) ! gud
2u

Following this, by analogy with the procedure for deducing d ( f (x)), since

d (
-

f ) 5 H 1 ` for
-

f (x) 5 0

0 for
-

f (x) Þ 0
5 H 1 ` for x P Ni

0 for x ¸ Ni
(15)

we can expand the d -function d (
-

f ) as

d (
-

f ) 5 o
l

i 5 1

ci d (Ni) (16)

where the coefficients ci must be positive, i.e., ci 5 | ci | .
In the following, we will discuss the dynamic form of the tensor current

j m n and study the topological quantization of strings through the winding

numbers (Guillemin and Pollack, 1974) Wi of
-

f on M i at pi ,
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Wt 5
1

2 p # - S i

d arctan F f 2

f 1 G
where - S i is the boundary of a neighborhood S i of pi on M i with pi ¸ - S i.

The Winding numbers Wi correspond to the first homotopy group p [S 1] 5
Z (the set of integers). By making use of (6), it can be precisely proved that

Wi 5
1

2 p # - S i

n*( e abn
adnb) (17)

where n* is the pullback of the map n. This is another definition of Wi by

the Gauss map (Dubrosin et al., 1985) n: - S i ® S 1. In topology this means

that, when the point v 5 (v 1, v 2) covers - S i once, the unit vector n a will
cover S 1 a total of Wi times, which is a topological invariant and is also

called the degree of the Gauss map. Using the Stokes theorem in the exterior

differential form and (17), one can deduce that

Wi 5
1

2 p # S i

e ab - An a - Bn bdv A ` dvB

5
1

2 p # S i

e AB e ab - An a - Bn bd 2v

Then, by duplicating the above process, we have

Wi 5 # S i

d (
-

f )J 1 fv 2 d 2v (18)

Substituting (16) into (18), and considering that only one pi P S i , we get

Wi 5 # S i

ci d (Ni)J 1 fv 2 d 2v

5 # S i # Ni

ci
1

! gx ! gv

d 4 (
-

x 2
-
z i (u

1, u 2))J 1 fv 2 ! gud 2 u ! gv d 2v

where gv 5 det(gAB). Because ! gu ! gv d 2u d 2v is the invariant volume element

of the product manifold M i 3 Ni , so it can be rewritten as ! gx d 4x. Thus,

by calculating the integral and with positivity of ci , we get

ci 5
b i ! gv

| J ( f /v)pi |
5

b i h i ! gv

J ( f /v)pi

(19)
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where b i 5 | Wi | is a positive integer called the Hopf index (Milnor, 1965)

of the f -mapping on M i; this means that when the point v covers the neighbor-

hood of the zero point pi once, the function
-

f covers the corresponding

region in
-

f -space b i times, and h i 5 sign J ( f /v)pi 5 6 1 is the Brouwer
degree (Milnor, 1965) of the f -mapping. Substituting this expression for ci

and (16) in (12), we obtain the total expansion of the string current

j m n 5
Lp

! gx
o
l

i 5 1

b i h i ! gv

J ( f /v) | pi

d (Ni)J
m n 1 fx 2

From the above equation, we conclude that the inner structure of j m n is labeled

by the total expansion of d (
-

f ), which includes the topological information

b i and h i.
With the discovery of an explicit four-particle amplitude that combines

the narrow-resonance approximation with Regge behavior and crossing sym-

metry, some physicists began to study dual resonance models, i.e., string

models, which can be generated from our topological tensor current theory.

It is obvious that, in (13), when u 1 and u 2 are taken to be timelike evolution

parameter and spacelike string parameter, respectively, the inner structure of
j m n just represents l strings moving in the 4-dimensional Riemann±Cartan

manifold X. The 2-dimensional singular submanifolds Ni (i 5 1, . . . , l) are

their world sheets. Here we see that the strings are generated where
-

f 5 0

and are not tied to any concrete models. Furthermore, we see that the Hopf

indices b i and Brouwer degrees h i classify these strings. More precisely the

Hopf indices b i characterize the absolute values of the topological quantiza-
tion; the Brouwer degrees h i 5 1 1 correspond to strings and h i 5 2 1

to antistrings.

4. THE EVOLUTION EQUATIONS OF STRINGS

First we give some useful relations to study many-string theory. On the

ith singular submanifold Ni we have

f a(x) | Ni 5 f a(z 1
i (u), . . . , z 4

i (u)) [ 0

which leads to

- m f a - x m

- u I Z Ni

5 0, I 5 1, 2

Using this relation and the expression for the Jacobian matrix J ( f /v), we

obtain
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J m n 1 fx 2 Z -
f 5 0

5
1

2
e m n l r e ab

- f a

- x l
- f b

- x r

5
1

2
e m n l r e ab

- f a

- v A

- f b

- v B

- v A

- x l
- v B

- x r

5
1

2
e m n l r e AB J 1 fv 2 - v A

- x l
- v B

- x r (20)

From this expression, the rank-two tensor current can be expressed by

j m n 5
Lp

2 ! gx
o

l

i 5 1

b i h i ! gv d (Ni) e m n l r e AB
- v A

- x l
- v B

- x r (21)

Corresponding to the rank-two topological tensor currents j m n , it is easy
to see that the multistring Lagrangian is

L 5
1

Lp ! 1

2
g m l g n r j m n j l r 5 d (

-
f )

which includes the total information of strings in X and is the generalization

of Nielsen’ s Lagrangian for strings (Nielsen and Olesen, 1973). The action

in X is expressed by

S 5 # X

L ! gx d 4x 5 o
l

i 5 1

b i h i # Ni

! gu d 2u 5 o
l

i 5 1

b i h i Si

where Si is the area of the singular manifold Ni. The Nambu±Goto action

(Nambu, 1970; Forster, 1974; Orland, 1994), which is the basis of many

works on string theory, is derived naturally from our theory. From the principle

of least action, we obtain the multistring evolution equations

g IJ - g n l

- x m
- x n

- u I

- x l

- u J 2 2
1

! gu

-
- u I 1 ! gug

IJ g m n
- x n

- u J 2 5 0, I, J 5 1,2

(22)

As a matter of fact, this is just the equation of a harmonic map (Duan et
al., 1992).

5. CONCLUSION

In summary, we have studied the topological quantization of strings in

Riemann±Cartan space±time by making use of composed gauge theory and

f -mapping topological current theory. As a result, the strings are generated
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from the zero points of the f -mapping and the topological quantum numbers

of these strings are the winding numbers, which are determined by the Hopf

indices and the Brouwer degrees of the f -mapping; the singular manifolds
of

-
f are just the evolution surfaces of these strings. The whole theory in

this paper is not only covariant under general coordinate transformations,

but also gauge invariant.
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